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Abstract—Increasingly, autonomous vehicles (AVs) are becom-
ing a reality, such as the Advanced Driver Assistance Systems
(ADAS) in vehicles that assist drivers in driving and parking
functions with vehicles today. The localization problem for AVs
relies primarily on multiple sensors, including cameras, LiDARs,
and radars. Manufacturing, installing, calibrating, and maintain-
ing these sensors can be very expensive, thereby increasing the
overall cost of AVs. This research explores the means to improve
localization on vehicles belonging to the ADAS category in a
platooning context, where an ADAS vehicle follows a lead ‘Smart’
AV equipped with a highly accurate sensor suite. We propose and
produce results by using a filtering framework to combine pose
information derived from vision and odometry to improve the
localization of the ADAS vehicle that follows the smart vehicle.

Index Terms—Autonomous Vehicles, Multi-Agent Systems,
Localization, Mapping, Visual Odometry, Sensors, Extended
Kalman Filter, Perception

I. INTRODUCTION

Autonomous Vehicles (AVs) are a reality waiting to hap-
pen, with broad applications in logistics, travel, and ser-
vice industries. Moreover, the ability of AVs to collaborate,
forming multi-agent networks would boost the productivity
and efficiency of tasks performed by these vehicles. While
the development of standalone autonomous vehicles has seen
great strides, the development of multi-agent systems requires
highly accurate mapping and localization of all agents.

Due to cost and complexity, it is not always possible for
all agents of a multi-agent autonomous vehicles network to
possess equivalent sensing suites in terms of accuracy and
precision. It would be ideal to exploit the sensing suites
available on one vehicle with high-end sensors to improve
the localization of other vehicles with a low-cost sensor suite.
This premise is the focus of this work, where we will describe
a mechanism of detecting and improving localization on a
vehicle with a lower-grade sensor suite, by using the state
estimations derived from a vehicle with a higher-grade sensor
suite and relating these to the follower vehicle.

The specific focus of this work is a two-vehicle setup. The
first is a lead vehicle having a robust and highly accurate
sensor suite. We will refer to this vehicle as the smart vehicle.
Improving the localization of the ADAS vehicle with dimin-
ished sensing capabilities is our primary goal. We propose
a fusion framework to fuse the pose information acquired
from the smart vehicle along with the odometry of the ADAS
vehicle to improve its localization. We test our setup on the
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Fig. 1. Improving localization of an ’ADAS’ vehicle by fusing pose from
inertial odometry(ADASHworld) and pose information derived by perceiving
the smart vehicle(ADASHworld). Fusion is done through an EKF that gives
the improved pose estimate ADAS P̂world. AHB is the pose of A in frame
B.

Ford Multi-AV Seasonal dataset [1]. The dataset contains
odometry and other sensor data from multiple vehicles driving
through the Michigan-Detroit area. The illustration of our
problem statement is shown in Fig 1.

The main contributions of this work are:
• Development of a filtering framework for collaborative

multi-agent localization
• Testing of the framework on a real-world dataset - Ford

Multi-AV Seasonal dataset

II. RELATED WORK

While the solution to the localization problem on standalone
vehicles can be viewed as part of the SLAM (Simultaneous
Localization and Mapping) problem, the research into col-
laborative multi-agent localization takes varied approaches. A
feature detection and two-stage filtering mechanism has been
described in [2]. Another approach to solving this problem is
to treat the multiple agents as parts of the same entity, which
has been detailed by authors in [3]. An approach using particle
filters, where the particles are shared between the agents has
been proposed by [4]. [5] is a detailed survey that points
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Fig. 2. The proposed Framework: Perception module inputs a pose informa-
tion to the filter, odometry information is also input to the network to obtain
an improved pose estimate

out the various methods and problems related to Multi-Agent
Localization.

The literature on localization approaches can be classified
into three broad categories: algorithms based on the Extended
Kalman Filter, the Particle Filter, and Graph-based approaches.
Solutions using a camera as the primary source of data are
also being developed, such as solutions to the Visual SLAM
problem. In this work, our goal is to establish the advantages
of using a perception system on an ADAS vehicle with a
lower-grade sensor suite to detect the smart vehicle with a
higher-grade sensor suite, thereby improving the localization
of the ADAS vehicle. Thus, for localization, we focus on using
the Extended Kalman Filter and we make the assumption that
there is a communications link between the two vehicles.

III. TECHNICAL APPROACH

Consider the three important frames in Fig. 1. The Global
frame(Hworld) or Map frame is the frame from which all other
frames are defined. This is usually dependent on the map being
used. The map is considered to be known for the purposes of
this work, and thus raw poses of both vehicles are defined in
this frame. The Local or Start frame is the frame from which
we begin the experiments. The measurements of the IMU are
defined with respect to this frame. The Body frame is the
frame of the vehicle in each instance.

For our experiments, since the map is as available from
the dataset, we know the start position of the robot, implying
we know the transformation between the Global frame and
the Local frame, which is simply the start position of the
vehicle. To perform filtering and get pose estimates in the
Global frame, we need transforms from the Local frame to
the Body frame at every instance of fusion, along with the
transformation from the Global frame to the Local frame. Only
then can the Global → Local → Body transform be achieved,
through which the measurements can be fused.

To achieve the Local to Body transform at each instance,
we use EKF node 1 as shown in Fig. 2, which fuses only the
raw poses. Using the generated poses and a static transform
to describe the Global to Local transform, we are able to use
EKF node 2, to perform sensor fusion on the raw poses and
the measurements from the perception module. Particularly,
node 2 uses the poses of the ADAS vehicle(TC

O ), and output
of the perception module(TC

W ) as input, fusing them based
on the Extended Kalman Filter algorithm, to generate state
estimates. We note that TC

O is fused relatively, while TC
W are

fused as absolute measurements of the pose.

A. Localization
For localization and filtering, we use the filtering setup

provided by the robot localization [6] ROS package. We set up
two nodes of the Extended Kalman Filter for the reasons stated
earlier. The first node, filters the pose odometry of the ADAS
vehicle, to produce the transform between the start frame and
the body frame. Using this, measurements of raw poses and
perception are fused in the second node. The setup is described
in detail below.

1) Extended Kalman Filter: The Extended Kalman filter
(EKF) is a nonlinear estimation algorithm used to estimate the
states of a system with nonlinear dynamics. It is an extension
of the Kalman filter, which handles the nonlinearities by using
a first-order linear approximation of the nonlinear system.
The EKF works by linearizing the system around the current
estimate and then updating the estimate using a combination
of the linearized model and the measurements. We model the
system as the linear approximation of a nonlinear system,
given by

Xk+1 = AkXk + ξ, ξ ∼ N (0,Σ) (1)

where Ak is the linear approximation of the posterior at step
k. Here, Ak used in the robot localization package is the
standard motion model for a rigid body. We also note that
by implication of using the EKF, we assume a zero mean
Gaussian noise in the system dynamics, with covariance Σ as
shown above.

To fuse the odometry of the ADAS vehicle with the pose
estimates from the smart vehicle, we consider a linear model
for the measurements given by

Yk = HkXk + η, η ∼ N (0,Γ) (2)

Similar to the motion model, the noise here is considered
to be zero mean Gaussian, with covariance given by Γ.

For the state estimation of the ADAS vehicle, we con-
sider a 15 dimensional state vector, containing the positions,
orientations, linear velocities, angular velocities and linear
accelerations. The dataset contains IMU, GPS data and Pose
data derived from the IMU and GPS data. Therefore, we would
use the Pose data directly for fusion as the odometry data.
Consequently, the measurement model is simplified to being an
identity transformation. Based on the frequency of the odom-
etry measurements, pose estimates from the smart vehicle, we
carry out the prediction and update steps sequentially.



2) Perception Simulator: We simulate the perception mod-
ule by using the noisy ground truth data. Using the ground
truth pose of the ADAS vehicle (PC

W ) and ground truth pose
of the smart vehicle (PS

W ), we arrive at the pose of the ADAS
vehicle in the frame of the smart vehicle (PC

S ).

PC
S = PC

WPW
S (3)

During the simulations, independent noises are added to the
translation along x and y (T ) and rotation (R) of these poses,
such that:

T ′ = T +Σ,Σ ∼ (0, σ) (4)

We work with rotations as quaternions, and rotation noise is
added such that,

R′ =


x
y
z
w

 ∗


0
0

cos(θ/2)
sin(θ/2)

 , θ ∼ (0, γ) (5)

where, θ is the rotation about z. This transformation is then
combined back with the pose of the smart vehicle in the world
frame (PS

W ) to give us The new pose of the ADAS vehicle
in the world frame (TC

W ). The translation noises are added to
only x,y coordinates.

P
′′C
S =

[
R′ T ′ ]

(6)

TC
W = P

′′C
S PS

W (7)

This measurement TW
C is used as the input to the second EKF

node.
3) Raw Poses: Raw poses are taken from the rosbag,

which contains position and orientation information along with
timestamps. These are fused pose estimates from the Applanix
POS module, which uses its internal IMU, GPS and estimator.
Given that the accuracy of the sensors are high, we will
perturb these measurements with noises, supplanting for a
noisy sensor. For translations Traw and rotation quaternions
Rraw from the bag,

T
′

raw = Traw +Σraw,Σ ∼ (0, σraw) (8)

R′
raw =


x
y
z
w

 ∗


0
0

cos(θraw/2)
sin(θraw/2)

 , θraw ∼ (0, γraw) (9)

IV. EXPERIMENTS AND RESULTS

A. Dataset

The Ford Multi-AV Seasonal dataset contains the sensor
data in rosbags. These rosbags contain data in the NED (North-
East-Down) frame, and this is converted to the ENU (East-
North-Up) frame, to align with the standards set by ROS
REP-103 for outdoor navigation. Vehicle 1 is considered the
smart vehicle, while vehicle 2 is the ADAS vehicle. Given the
internal clocks of the vehicles have not been synchronized, we
perform this synchronization using GPS time. We compute and

publish TW
C only if the time difference between when PS

W and
PC
W is received is less than a threshold of 0.1s. For purposes

of this work, we perform filtration on a specific portion of
the dataset, that consists of two vehicles in proximity to each
other. The results shown below are derived using the data from
Vehicle 1 and Vehicle 2 from the logs of 24th July 2017.

B. Results

The experiments are structured to test the filter performance
through various noise levels and frequencies of data avail-
ability. During the experiments, it was noted that the pose
estimates along the z-axis for ADAS vehicle (Vehicle 2), were
very noisy and uncharacteristic of the sensor specifications.

The frequency of the ADAS vehicle and smart vehicle’s
poses is around 200 Hz. In the first experiment, we simulate
the perception module to also produce estimates using all
of the measurements. However, we do add noises to the
perception module measurements as described in previous
sections. We set σ = 5, γ = 5, to simulate the noises that
would arise from using visual feedback. Using this and the
raw pose (odometry) measurements of the ADAS vehicle, we
produce 6DoF state estimates for the ADAS vehicle, whose
trajectory is shown in Fig 3. Note that the raw poses are only
corrupted by the noise inherent in the sensor, Applanix POS
and its internal estimator. We use the rpg trajectory evaluation
tool [7] on ROS to perform trajectory alignment and analysis.
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Fig. 3. Trajectory of ADAS Vehicle, σ=5, γ=5, no added noise on raw pose
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Fig. 4. Position error ADAS Vehicle, σ=5, γ=5, no added noise on raw pose

In Fig. 3, the estimated pose vs. ground truth pose is
presented. The corresponding error is shown in Fig. 4 and
Fig. 5. As expected, it is evident that when the odometry
is accurate, the noises from the perception measurements are
filtered out, and we get an absolute mean translation accuracy
of 0.127m and an absolute mean orientation accuracy of 1.080
degrees.
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Fig. 5. Orientation error of ADAS Vehicle,, σ=5, γ=5, no added noise on
raw pose

In the next experiment, we add noises to the raw pose
measurements. We perform ablation on various noise levels
across each state. For purposes of this analysis, we study the
effects of various noise levels in the perception module, for
a particular noise in the raw pose measurements. Tables I
and II show the errors in translation at different perception
noise levels and the error with only the odometry. Note that
fixing σraw = 2.5m, γraw = 0° corresponds to having an
accurate heading with a high translation noise, where 68% of
the additive noises are within (-2.5, 2.5).

TABLE I
TRANSLATION RMSE FOR σraw = 2.5m, γraw = 0°

Noises Std Dev σ = 0.3m σ = 0.6m σ = 0.9m
w/o perception 0.846

γ = 10° 0.095 0.155 0.183
γ = 15° 0.097 0.144 0.185

TABLE II
TRANSLATION RMSE FOR σraw = 2.5m, γraw = 1°

Noises Std Dev σ = 0.3m σ = 0.6m σ = 0.9m
w/o perception 1.311

γ = 10° 0.111 0.230 0.217
γ = 15° 0.123 0.235 0.250

However, in practice, the perception module is not ex-
pected to produce data at such a high frequency. While
the above experiments showcase the potential of using the
perception module, to be a practical solution, we need to
test its performance at lower frequencies. To sub-sample the
data in the rosbag, we make use of the drop tool in ROS.
For the experiment, the frequency of the raw messages is
dropped down to approximately 100 Hz, while the frequency
of the smart vehicle’s pose information is dropped down to
approximately to 5 Hz. And the results of this are shown in
Table III.

TABLE III
TRANSLATION RMSE FOR σraw = 2.5m, γraw = 0.5°

Noises Std Dev σ = 0.3m σ = 0.6m σ = 0.9m
w/o perception 1.061

γ = 10° 0.318 0.825 0.560
γ = 15° 0.446 0.641 0.499
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Fig. 6. Trajectory for γ = 10°, σ = 0.3m, reduced frequency

As an example, Fig. 6 shows the trajectory of the vehicle
along with the ground truth at one of the noise levels, where
we can see a near smooth trajectory.

V. DISCUSSION

From the experiments, it is evident that, even in the pres-
ence of noisy odometry, the use of the perception module
can improve the overall localization of the ADAS vehicle.
Furthermore, the improvement in translation is more prevalent
for a wider range of raw pose noises. Using perception does
improve heading estimates in some cases. However, it fails to
do so when the odometry heading noise levels are beyond a
bound. This is likely because given poor heading estimates
from both sensor inputs, the filter is unable to filter out the
heading noises, which worsens when integrated over time. We
find that results are promising even when the frequencies of
the measurements are low, as shown in Table III. Another
behavior that was noticed was high heading errors with high
oscillations in the beginning, which settled to a lower value
after a period of time.

VI. CONCLUSION AND FUTURE WORK

In this work, we have developed and presented a localization
mechanism that can be used for multi-agent localization, using
odometry and visual feedback. The experiments show a clear
and consistent improvement in translational accuracy, and
bounded errors. The framework when tested on the Ford Multi-
AV Seasonal Dataset is robust over various noise levels.

With a working localization pipeline, the future scope of
this work is to use a detection and association system instead
of the simulator. This would give us a complete detection and
filtering framework that can be deployed and tested in real-
world systems. Timestamp matching for the data was done
using a constant offset which was calculated with GPS time
as the reference. However, a better approach can be used to
further synchronize the data from both vehicles accurately.
Also, in terms of the filter, we have not deployed any outlier
rejection techniques or applied any constraints on the evolution
of the system dynamics, so this is left to future work.
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