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Abstract—Multi-agent reinforcement learning (MARL) is a re-
cently popular approach for solving complex tasks with multiple
agents present. Ad hoc teaming (AHT) is a more specific problem
formulation in which an agent must successfully coordinate with
other previously unseen teammates. We model our problem
within the framework of a multi-agent Markov decision process
(MMDP) and use successor features and generalized policy im-
provement for efficient and effective knowledge transfer between
different teams. Theoretical optimality bounds are derived and an
algorithm is proposed for zero-shot coordination with an ad hoc
team. We empirically demonstrate that our method successfully
transfers to new teams in a collaborative object-collecting game
environment.

Index Terms—multi-agent reinforcement learning, ad hoc
teaming, coordination

I. INTRODUCTION

In recent years, ad hoc teaming (AHT) has been proposed
as a challenge for multi-agent autonomous systems, in which
an agent must be able to successfully coordinate with other
unknown agents [1]. Classic multi-agent reinforcement learn-
ing (MARL) algorithms jointly train all agents in the team
together, whereas in AHT, only a single agent (the learner) is
controlled [2], [3]. Generalizing to teammates the learner has
never seen before is a crucial open problem for AHT [4].

Prominent methods for AHT involve pre-training the learner
with a set of teammates to generate a set of policies from
which the best candidate is picked using inference during test
time [5], [6]. Our approach also generates a set of policies
using pre-training, but instead of choosing one to use, performs
generalized policy improvement to leverage the whole set.
Generalized policy improvement has been used for single-
agent transfer learning where the reward function differed
[7]. However, transfer learning within AHT presents a unique
challenge because both the rewards and the dynamics change.

The contributions of this paper are as follows:
1) formalization of an ad hoc teaming MDP framework for

coordination with new teammates,
2) theoretical bounds on the performance of the controlled

agent when coordinating with an ad hoc team,
3) empirically demonstrating the performance of an algo-

rithm in a collaborative game environment for zero-shot
coordination with an ad hoc team.

This work was supported in part by ONR N00014-20-1-2249 and a NASA
grant awarded to the Illinois/NASA Space Grant Consortium.

II. BACKGROUND AND RELATED WORK

A. Multi-agent Reinforcement Learning

We model our problem within the framework of a multi-
agent Markov decision process (MMDP) defined by a tuple
(S,N , {Ai}i∈N , p, r, γ). Here, S is the state space, N is the
set of agents, Ai is the action space of agent i, and γ ∈
[0, 1) is the discount factor. Let A := ×i∈NAi be the joint
action space. Then p(s′|s,a) : S ×A×S 7→ [0, 1] is the state
transition function and r(s,a, s′) : S×A×S 7→ R is the team
reward function, for states s, s′ ∈ S and joint action a ∈ A
composed of individual actions ai ∈ Ai.

At time step t, each agent i ∈ N executes an action ait
given the current state st, after which the system transitions
to state st+1 and the team receives reward r(st,at, st+1). Let
πi(ai|s) : S × Ai 7→ [0, 1] be an individual policy for agent
i and π(a|s) :=

∏
i∈N πi(ai|s) be the resulting joint policy

of all agents. The performance of a joint policy π can be
described by its action-value function,

Qπ(s,a) :=Ep,π

[ ∞∑
t=0

γtr(st,at, st+1) | s0 = s,a0 = a

]
.

(1)

B. Generalized Policy Updates with SFs

Generalized policy updates generalize two key operations in
RL, policy evaluation and policy improvement, to operate over
sets of tasks and policies, respectively [8]. Let R be a set of
tasks defined by different reward functions. Generalized policy
evaluation (GPE) computes the value function, Qπ

r (s,a), of a
policy π for each task r ∈ R. Generalized policy improvement
(GPI) defines a policy π′ that improves over a set of policies
Π for a task r. Efficient implementations of GPE and GPI can
be used for fast transfer in RL as follows.

Assume that each task in R can be defined as a linear
combination of features,

r(s,a, s′) = ϕ(s,a, s′)⊺w, (2)

where ϕ(s,a, s′) : S ×A×S 7→ Rd a function mapping to d
features and w ∈ Rd is a weight vector specifying preferences



over features. Following [7], define the SFs of policy π as,

ψπ(s,a) = Ep,π

[ ∞∑
t=0

γtϕ(st,at, st+1) | s0 = s,a0 = a

]
.

(3)
SFs represent the expected discounted sum of features when
starting in state s, taking action a, and following policy π.
The action-value function of π on task r, Qπ

r (s,a), can then
be represented as,

Qπ
r (s,a) = ψπ(s,a)⊺w. (4)

Given the SFs of policy π, ψπ(s,a), we can now quickly
perform GPE over tasks in R by computing Equation (4) using
the weights w associated with each task. Assume that we are
given a set of policies Π = {πi}ni=1 and their corresponding
action-value functions {Qπi

r }ni=1 for a task r. Following [7],
GPI can be efficiently performed on task r through a policy
π′ defined as,

π′(s) ∈ argmax
a∈A

max
π∈Π

Qπ
r (s, a). (5)

We refer to π′ as the GPI policy.
We can use these implementations of GPE and GPI for

transfer learning by assuming the agent has pre-trained on
a set of source tasks R = {ri(s,a, s′) = ϕ(s,a, s′)⊺wi}ni=1,
resulting in a set of optimal policies Π = {π∗

i }ni=1, where
π∗
i is an optimal policy for task ri. We also compute the set

of SFs associated with each policy, Ψ = {ψπ∗
i }ni=1. Given a

new target task rn+1 = ϕ(s,a, s′)⊺wn+1, we can now use
Equation (5) to define a policy π′ that is no worse than any
policy in Π on this task. Furthermore, if we compute the set
{Qπ∗

i
rn+1}ni=1 using Equation (4), we can implement π′ without

additional learning on the target task. If additional learning
is allowed, we can use π′ to optimize a policy for rn+1, for
example using SFQL (Algorithm 3 in [8]). We use generalized
policy updates as a framework for fast transfer in an ad hoc
team setting.

III. PROBLEM FORMULATION

A. Ad Hoc MMDPs

We modify the general formulation of MMDPs for ad hoc
teaming as follows. Let a ∈ N be the learner (i.e., the agent
whose policy we aim to optimize) and Nu = N \ {a} be
the complementary set of all teammates (i.e., uncontrolled
agents). We assume that each teammate follows a fixed policy,
which is unknown to the learner. Teammate policies may be
suboptimal with respect to the team reward r and the ad hoc
team considered due to, e.g., the teammates being trained
for a different task or with different teammates, or being
humans and having inherent biases towards different goals.
We formally define this problem as an ad hoc MMDP.

Definition 1 (Ad Hoc MMDP). An ad hoc MMDP is defined
by a tuple M := (S,N , a, {Ai}i∈N , p, r, {πi}i∈Nu

, γ), where
a ∈ N is the learner, Nu = N \{a} is the complementary set
of teammates, and πi(s) : S 7→ Ai is the fixed deterministic
policy of teammate i.

We refer to an ad hoc MMDP M as an ad hoc team. The
performance of a learner policy πa in ad hoc team M can be
described by its action-value function,

Qπa,π−a
(s, aa) :=Ep,πa,π−a

[ ∞∑
t=0

γtr(st,at, st+1)

| s0 = s, aa
0 = aa

]
,

(6)

where π−a is the joint policy of all teammates induced by
{πi}i∈Nu

. Our objective is to compute an optimal learner
policy, πa∗ , which satisfies,

Qπa∗ ,π−a
(s, aa) := max

πa
Qπa,π−a

(s, aa), (7)

for all s ∈ S and aa ∈ Ai. Note that optimizing a learner
policy for an ad hoc team M is equivalent to solving a
single-agent Markov decision process (MDP) with a transition
function p̃ that captures the impact of teammate policies π−a.

B. Transfer Learning in Ad Hoc MMDPs

We assume that the learner can leverage prior training with
a set of different teams to quickly adapt to a new ad hoc
team. To formalize this transfer problem, we define the set of
possible ad hoc teams M as,

M(S,D, N, a, {Ai}i∈D, p, r, {πi}i∈D\{a}, γ) :=

{M(S,N , a, {Ai}i∈N , p, r, {πi}i∈Nu
, γ)},

(8)

where D is the set of all possible teammates, N ∈ Z is the
number of agents in each team, and N ⊆ D is the set of agents
in an ad hoc team (where |N | = N ). Let M0 = {Mi}ni=1 ⊆
M be the set of source ad hoc teams with which the learner
pre-trains. Our objective is then to quickly learn an optimal
learner policy πa∗

n+1 for a new ad hoc team Mn+1 ∈ M\M0,
leveraging information from pre-training on M0.

IV. OUR APPROACH

A. Generalized Policy Improvement for Ad Hoc Teaming

We propose a new approach, named GSAT (GPI with SFs
for Ad Hoc Teaming), to address the transfer problem in ad
hoc MMDPs. To use GPI for transfer learning, we need to
define four components: features ϕ, a set of policies Π, a new
task, and a GPI policy to act in that new task. For this work,
we assume the features ϕ are fixed and heuristically defined
such that the team reward function r can be modeled using
Equation (2), which produces a weight vector w. Alternatively,
various methods have been proposed to learn useful features
for SFs and the corresponding weights w [9], [10].

We define the set of policies Π based on pre-training the
learner with the set of source ad hoc teams M0. That is,
we optimize a set of learner policies Π = {πa∗

i }ni=1, where
πa∗
i is the optimal learner policy for ad hoc team Mi ∈ M0.

We assume this process also generates a corresponding set of
learner SFs Ψ = {ψπa∗

i ,π−a
i }ni=1. Here, we define the learner



SFs, ψπa,π−a
i , as the SFs of learner policy πa in ad hoc team

Mi ∈ M. That is,

ψπa,π−a
i (s, aa) =Ep,πa,π−a

i

[ ∞∑
t=0

γtϕ(st,at, st+1)

| s0 = s, aa
0 = aa

]
,

(9)

where π−a
i is the joint policy of all teammates in ad hoc team

Mi. The set Ψ can be learned, for example, by using Algorithm
1 in the SI appendix of [9]. We use these SFs to model the
action-value function of learner policy πa in ad hoc team Mi

as,
Qπa,π−a

i (s, aa) = ψπa,π−a
i (s, aa)⊺w. (10)

We refer to ψπa,π−a
i as ψπa

i and Qπa,π−a
i as Qπa

i hereafter to
simplify notation.

Existing work defines a new task through a new reward
function rn+1 [9]. Instead, we define a new task as a new
ad hoc team Mn+1, which defines a new joint policy for
teammates π−a

n+1 but uses the same team reward function r
used by all other ad hoc teams. That is, our tasks change
through the dynamics induced by new teammate policies,
rather than through the weights of a linear reward function.
However, these new dynamics mean that our set of pre-trained
learner SFs Ψ is no longer valid in the new task. Therefore,
we include a learning period where we update the SFs in Ψ to
account for the new task, and use these updated SFs to directly
implement a GPI policy of the form in Equation (5).

B. Theoretical Bounds for GPI in Ad Hoc MMDPs

Here we provide performance bounds for transferring poli-
cies in ad hoc MMDPs. The proofs can be found at https:
//tinyurl.com/gsat-proof. Given a set of learner policies Π and
their corresponding learner SFs in Mn+1, we define a GPI
policy π′

w to act in Mn+1 as,

π′
w(s) ∈ argmax

aa∈Aa
max
πa∈Π

ψπa

n+1(s, a
a)⊺w. (11)

1) GPI Performance Bound: Here we extend the idea and
proof of GPI to our setting. We follow the proof structure
of Theorem 1 from [8], adjusted for our problem setting
and notation. We assume deterministic policies for notational
simplicity and remind the reader that a (fixed) joint policy π−a

j

is defined for a given ad hoc team Mj ∈ M. Here the GPI
policy is obtained from policies learned in the same MDP the
GPI policy is executed in; therefore the subscript j is dropped
from terms in this theorem.

Theorem 1. Let πa
1, . . . , π

a
n be n learner policies for ad

hoc team M ∈ M. We can approximate their action-value
functions to obtain the set {Q̃1, Q̃2, . . . , Q̃n}, such that,

| Qi(s, aa)− Q̃i(s, aa) |≤ ϵ,

for all s ∈ S, aa ∈ A, and i ∈ {1, . . . , n}, where ϵ is the
approximation error. We additionally denote a = (aa,a−a) =

(aa, π−a(s)) for any s ∈ S. We now define a GPI learner
policy πa(s) as,

πa(s) := argmax
aa

max
i
Q̃i(s, aa),

with its corresponding action-value function denoted by Qπa
.

We can bound its performance as,

| Qπa
(s, aa)−max

i
Qi(s, aa) |≤ 2

1− γ
ϵ (12)

In other words, the performance of the greedily-defined
policy πa(s) with any team in M is no worse than each of the
policies in the set of agent policies πa

1, . . . , π
a
n learned earlier.

2) Policy Transfer in Ad Hoc MMDPs: Here we derive a
performance bound for transferring a policy that was optimized
in an ad hoc MMDP different from the one in which it is
executed. Specifically, we bound the difference between the
action-value function of a deterministic policy for the learner
optimized for Mk and executed in Mk and the action-value
function of a deterministic policy for the learner optimized for
Mj but executed in Mk.

Lemma 1.

Q∗
k −Qj∗

k ≤ 2

(
ϵr + 2γdTV · Ω

1− γ

)
, (13)

where we define ϵr := maxs,aa |ra
k(s, a

a) − ra
j(s, a

a)|,
dTV (pk, pj) := 1

2 maxs,a
∑

s′ |pk(s′|s, a) − pj(s
′|s, a)|, and

Ω := maxs,aa Q∗
j +

1
2 .

3) GPI for Transfer in Ad Hoc MMDPs:

Theorem 2. Suppose the agent has optimized policies in n
different ad hoc MMDPs within Mϕ \Mk, so that we have
n policies πa∗

1 , . . . , π
a∗
n . First we approximate the action-value

function of these policies when executed in Mk such that,

| Qj∗
k (s, aa)− Q̃j∗

k (s, aa) |≤ ϵ (14)

for all s ∈ S, aa ∈ A, where ϵ is the approximation error and
j ∈ {1, . . . , n}.

Now, given the set {Q̃1∗
k , Q̃

2∗
k , . . . , Q̃

n∗
k }, we define the

learner policy πa as,

πa(s) ∈ argmax
aa

max
j
Q̃j∗

k (s, aa). (15)

with its corresponding action-value function denoted by Qπa

k .
Then we can bound its performance as,

| Q∗
k(s, a

a)−Qπa

k (s, aa) |≤ 2

1− γ
(ϵr + 2γdTV · Ω+ ϵ) (16)

where we define ϵr := maxs,aa |ra
k(s, a

a) − ra
j(s, a

a)|,
dTV (pk, pj) := 1

2 maxs,a
∑

s′ |pk(s′|s, a) − pj(s
′|s, a)|, and

Ω := maxs,aa Q∗
j +

1
2 . Here, j is the same as in Equation (15).

https://tinyurl.com/gsat-proof
https://tinyurl.com/gsat-proof


V. EXPERIMENTS

A. Environment

We empirically demonstrate GSAT’s performance in a
multi-agent object-collecting environment inspired by [9]. Our
environment is depicted in Figure 1 and has d different object
types. As in [9], the state representations are agent-centric and
toroidal, such that the agent is always in the upper left corner
and the grid is wrapped around the edges of the environment.
The representation has (d+ 2) channels, i.e., one channel for
each object type, one for all other agents, and one for walls.

We define the environment features as ϕ(si,a, si
′
) : Si ×

A × Si 7→ [0, n]d, where Si is the agent-centric state space
of the agent i, n = min{|N |, 18} represents the maximum
number of objects of a given type that can be collected in
a state transition, ϕ(si,a, si

′
) = 1 if a coin of type i was

collected during the transition from s to s′, and ϕ(si,a, si
′
) =

0 otherwise. We assume all agents have the same state space.
We use d = 3 objects (red, orange, yellow) for the presented
results.

Fig. 1. Multi-agent collect
game environment. The two
agents are represented by trian-
gles, where green is the learner
and purple is the uncontrolled
agent. Circles represent objects
and different object types have
different colours.

B. Results

We compare GSAT’s performance to the pre-trained learner
policies of set Π (i.e., the set of policies that yield the GPI
policy) and an SFQL agent [9] trained from scratch with the
new ad hoc team. Our choice of baselines is inspired by state-
of-the-art AHT methods, such as PLASTIC-policy [5]. When
confronted with a new ad hoc team, these methods use the
pre-trained policy in Π that is best suited for the new team,
typically based on inferred similarity to the new teammates.
Our results do not include this inference process and simply
show the performance obtained by each pre-trained policy in
Π. We include an SFQL agent to represent performance with
no prior training.

The environment consists of two agents: the learner and
an uncontrolled teammate. We pre-train two learner policies,
{πa∗

i }2i=1, each optimized for the task w = [1, 1, 1] with given
teammates, which characterize the set of source ad hoc teams,
M0. The teammate policies operate with a random agent
during training and optimize the following tasks: teammate
for πa∗

1 is optimal for the task w = [1, 0, 0] and teammate for
πa∗
2 is optimal for the task w = [0, 0, 1].
Figure 2 shows the mean return of GSAT when executed

with the new ad hoc team for 5000 episodes, after 600 episodes
of updating pre-trained SFs for the new ad hoc team (i.e.,
300 episodes for each pre-trained policy and its corresponding

SFs). We also include the mean return of each pre-trained
policy and the performance of the SFQL baseline. We see that
our method (GSAT) shows improved performance over each
pre-trained policy, as expected given Theorem 1. We also see
that SFQL requires about 2500 episodes before it surpasses
the performance of GSAT (or about 1900 episodes when we
include the required SF updating period of GSAT). However,
Figure 3 shows that GSAT’s performance strongly depends
on the accuracy of the updated SFs, as reducing the allowed
number of episodes for SF updating decreases performance.

Fig. 2. Total returns for learner and unseen partner with w = [−1, 1, 0].
We compare the performance of GSAT (with a total of 600 episode updates
beforehand) with SFQL from scratch and each pre-trained policy. Fixed policy
performance was averaged over all episodes.

Fig. 3. Total returns for learner and unseen partner with w = [−1, 1, 0]. We
vary the number of episodes each pre-trained policy updated ψ beforehand to
account for the dynamic changes induced by the new teammate.

VI. CONCLUSION

In this work, we proposed GSAT, a novel approach for AHT
that leverages GPI and SFs. In contrast to previous methods
that use a single policy from a pre-trained set, we leverage
the entire set of pre-trained policies at every time step by
applying a GPI policy with SFs. We empirically demonstrate
that this more exhaustive use of prior knowledge improves
performance in an object-collecting coordination environment
relative to baselines. Building from existing work, we also
derive performance bounds for our method. Future research
directions include developing more sample efficient ways to
update pre-trained SFs for a new task with different dynamics.
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